Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Radiat Oncol ; 46: 100765, 2024 May.
Article in English | MEDLINE | ID: mdl-38560512

ABSTRACT

Purpose: Due to its close vicinity to critical structures, especially the spinal cord, standards for safety for spine stereotactic body radiotherapy (SBRT) should be high. This study was conducted, to evaluate intrafractional motion during spine SBRT for patients without individualized immobilization (e.g., vacuum cushions) using high accuracy patient monitoring via orthogonal X-ray imaging. Methods: Intrafractional X-ray data were collected from 29 patients receiving 79 fractions of spine SBRT. No individualized immobilization devices were used during the treatment. Intrafractional motion was monitored using the ExacTrac Dynamic (ETD) System (Brainlab AG, Munich, Germany). Deviations were detected in six degrees of freedom (6 DOF). Tolerances for repositioning were 0.7 mm for translational and 0.5° for rotational deviations. Patients were repositioned when the tolerance levels were exceeded. Results: Out of the 925 pairs of stereoscopic X-ray images examined, 138 (15 %) showed at least one deviation exceeding the predefined tolerance values. In all 6 DOF together, a total of 191 deviations out of tolerance were recorded. The frequency of deviations exceeding the tolerance levels varied among patients but occurred in all but one patient. Deviations out of tolerance could be seen in all 6 DOF. Maximum translational deviations were 2.6 mm, 2.3 mm and 2.8 mm in the lateral, longitudinal and vertical direction. Maximum rotational deviations were 1.8°, 2.6° and 1.6° for pitch, roll and yaw, respectively. Translational deviations were more frequent than rotational ones, and frequency and magnitude of deviations showed an inverse correlation. Conclusion: Intrafractional motion detection and patient repositioning during spine SBRT using X-ray imaging via the ETD System can lead to improved safety during the application of high BED in critical locations. When using intrafractional imaging with low thresholds for re-positioning individualized immobilization devices (e.g. vacuum cushions) may be omitted.

2.
Phys Imaging Radiat Oncol ; 23: 134-139, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35958289

ABSTRACT

Background and purpose: Patients receiving cranial radiotherapy are immobilized with a thermoplastic mask to restrict patient motion. Depending on the target volume margins and treatment dose, different mask systems are used. Intrafractional movements can be monitored using stereoscopic X-ray imaging. The aim of the present work was to compare the magnitudes of intrafractional deviation for different mask systems. Material and methods: Four different head mask systems (open face mask, open mask, stereotactic mask, double mask) used in the treatment of 40 patients were investigated. In total 487 treatment fractions and 3708 X-ray images were collected. Deviations were calculated by comparison of the acquired X-ray images with digitally reconstructed radiographs. The results of intrafractional X-ray deviations for translational and rotational axes were compared between the different mask systems. Results: Deviations were below 0.6 mm for translations and below 0.6° for rotations for all mask systems. Along the lateral and longitudinal directions the stereotactic mask was superior, while along the vertical direction the double mask showed the lowest deviations. For low rotational deviations the double mask is the best amongst all other mask systems. Conclusion: As expected, the lowest movement was shown using cranial stereotactic mask systems. The results have shown deviations lower than 0.6 mm and 0.6° using any of the four thermoplastic mask systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...